I am a Courant Instructor in the Mathematics Department of the Courant Institute at New York University hosted by Professor Lai-Sang Young. Prior to this, I was a postdoctoral reasearcher in mathematics at CY Cergy Paris Université (Laboratoire AGM), working with Professor Armen Shirikyan.

I completed my PhD in 2020 at McGill University (Department of mathematics and statistics) and Université Grenoble Alpes (Institut Fourier), under the joint supervision of Professors Vojkan Jakšić and Alain Joye.

Find more about me on the *About* page or by visiting my ORCID, arXiv and Research Gate profiles.

I study mathematical physics, with emphasis on time-dependent aspects of **statistical mechanics** and **entropy production**, in both **quantum** and **classical** systems.
Relevant mathematical tools to study such problems include:

- probability theory (large deviations, stochastic differential equations);
- dynamical systems and ergodic theory (recurrence, mixing, theory of C*-algebras, random dynamical systems);
- operator theory (spectra, resolvents, perturbation theory, one-parameter semigroups).

I am co-organizing the Courant Dynamical Systems Seminar, which takes place on Wednesday afternoon at the Courant Institute.

Links to archived PDFs and more details can be found on the *Research* page.

- N. Barnfield, R. Grondin, G. Pozzoli and R. Raquépas.
*On the Ziv–Merhav theorem beyond Markovianity II*. - Z. Wu, R. Raquépas, J. Xin and Z. Zhang
*Computing large deviation rate functions of entropy production for diffusion processes in the vanishing-noise limit and high dimensions by an interacting particle method*. - N. Barnfield, R. Grondin, G. Pozzoli and R. Raquépas.
*On the Ziv–Merhav theorem beyond Markovianity I*. To appear in Can. J. Math. - N. Cuneo and R. Raquépas.
*Large deviations of return times and related entropy estimators on shift spaces*. Commun. Math. Phys. 405, Article 135 (2024). - R. Raquépas.
*The large-time and vanishing-noise limits for entropy production in nondegenerate diffusions*. Ann. Inst. Henri Poincaré Probab. Stat. 60, 431–462 (2024). - G. Cristadoro, M. Degli Esposti, V. Jakšić and R. Raquépas.
*On a waiting-time result of Kontoyiannis: mixing or decoupling?*Stoch. Proc. Appl. 166, 104222 (2023). - R. Raquépas.
*A gapped generalization of Kingman's subadditive ergodic theorem*. J. Math. Phys. 64, 062702 (2023). - G. Cristadoro, M. Degli Esposti, V. Jakšić and R. Raquépas.
*Recurrence times, waiting times and universal entropy production estimators*. Lett. Math. Phys. 113, Article 19 (2023). - S. Andréys, A. Joye and R. Raquépas.
*Fermionic walkers driven out of equilibrium*. J. Stat. Phys. 184, Article 14 (2021). - V. Nersesyan and R. Raquépas.
*Exponential mixing under controllability conditions for SDEs driven by a degenerate Poisson noise*. Stoch. Proc. Appl. 138, 26–55 (2021). - R. Raquépas.
*On Fermionic walkers interacting with a correlated structured environment*. Lett. Math. Phys. 110, 121–145 (2020). - T. Benoist, A. Panati and R. Raquépas.
*Control of fluctuations and heavy tails for heat variation in the two-time measurement framework*. Ann. Henri Poincaré 20, 631–674 (2019). - R. Raquépas.
*A note on Harris’ ergodic theorem, controllability and perturbations of harmonic networks*. Ann. Henri Poincaré 20, 605–629 (2019). - E. P. Hanson, A. Joye, Y. Pautrat and R. Raquépas.
*Landauer’s principle for trajectories of repeated interaction systems*. Ann. Henri Poincaré 19, 1939–1991 (2018). - E. P. Hanson, A. Joye, Y. Pautrat and R. Raquépas.
*Landauer’s principle in repeated interaction systems*. Commun. Math. Phys. 349, 285–327 (2017).

Last updated in September 2024.